Engineering of the genome editing protein Cas9 to slide along DNA

改造基因组编辑蛋白 Cas9,使其沿着 DNA 滑动

阅读:5
作者:Trishit Banerjee, Hiroto Takahashi, Dwiky Rendra Graha Subekti, Kiyoto Kamagata

Abstract

The genome editing protein Cas9 faces engineering challenges in improving off-target DNA cleavage and low editing efficiency. In this study, we aimed to engineer Cas9 to be able to slide along DNA, which might facilitate genome editing and reduce off-target cleavage. We used two approaches to achieve this: reducing the sliding friction along DNA by removing the interactions of Cas9 residues with DNA and facilitating sliding by introducing the sliding-promoting tail of Nhp6A. Seven engineered mutants of Cas9 were prepared, and their performance was tested using single-molecule fluorescence microscopy. Comparison of the mutations enabled the identification of key residues of Cas9 to enhance the sliding along DNA in the presence and absence of single guide RNA (sgRNA). The attachment of the tail to Cas9 mutants enhanced sliding along DNA, particularly in the presence of sgRNA. Together, using the proposed approaches, the sliding ability of Cas9 was improved up to eightfold in the presence of sgRNA. A sliding model of Cas9 and its engineering action are discussed herein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。