Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate

可食用膜中鼠李糖乳杆菌 GG 的稳定性:阴离子生物聚合物和乳清蛋白浓缩物的影响

阅读:6
作者:Christos Soukoulis, Solmaz Behboudi-Jobbehdar, William Macnaughtan, Christopher Parmenter, Ian D Fisk

Abstract

The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25 °C), in descending order, was κ-CAR/LBG > HSA > GEL > LSA = PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4 °C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6-4.3-fold increase at 25 °C. Furthermore probiotic films based on HSA/WPC and κ-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。