Antibacterial Electrodeposited Copper-Doped Calcium Phosphate Coatings for Dental Implants

用于牙种植体的抗菌电沉积铜掺杂磷酸钙涂层

阅读:8
作者:Camille Pierre, Ghislaine Bertrand, Iltaf Pavy, Olivier Benhamou, Christian Rey, Christine Roques, Christèle Combes

Abstract

Dental implants provide a good solution for the replacement of tooth roots. However, the full restoration of tooth functions relies on the bone-healing period before positioning the abutment and the crown on the implant, with the associated risk of post-operative infection. This study aimed at developing a homogeneous and adherent thin calcium phosphate antibacterial coating on titanium dental implants by electrodeposition to favor both implant osseointegration and to limit peri-implantitis. By combining global (XRD, FTIR-ATR, elemental titration) and local (SEM, Raman spectroscopy on the coating surface and thickness) characterization techniques, we determined the effect of electrodeposition time on the characteristics and phases content of the coating and the associated mechanism of its formation. The 1-min-electrodeposited CaP coating (thickness: 2 ± 1 μm) was mainly composed of nano-needles of octacalcium phosphate. We demonstrated its mechanical stability after screwing and unscrewing the dental implant in an artificial jawbone. Then, we showed that we can reach a high copper incorporation rate (up to a 27% Cu/(Cu+Ca) molar ratio) in this CaP coating by using an ionic exchange post-treatment with copper nitrate solution at different concentrations. The biological properties (antibiofilm activity and cytotoxicity) were tested in vitro using a model of mixed bacteria biofilm mimicking peri-implantitis and the EN 10993-5 standard (direct contact), respectively. An efficient copper-doping dose was determined, providing an antibiofilm property to the coating without cytotoxic side effects. By combining the electrodeposition and copper ionic exchange processes, we can develop an antibiofilm calcium phosphate coating on dental implants with a tunable thickness and phases content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。