Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations

通过实验和从头计算简化了由甲磺酸、胺和水形成新颗粒的机制

阅读:6
作者:Matthew L Dawson, Mychel E Varner, Véronique Perraud, Michael J Ezell, R Benny Gerber, Barbara J Finlayson-Pitts

Abstract

Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have also been recognized as important contributors. However, accurately predicting new particle formation in both laboratory systems and in air has been problematic. During the oxidation of organosulfur compounds, gas-phase methanesulfonic acid is formed simultaneously with sulfuric acid, and both are found in particles in coastal regions as well as inland. We show here that: (i) Amines form particles on reaction with methanesulfonic acid, (ii) water vapor is required, and (iii) particle formation can be quantitatively reproduced by a semiempirical kinetics model supported by insights from quantum chemical calculations of likely intermediate clusters. Such an approach may be more broadly applicable in models of outdoor, indoor, and industrial settings where particles are formed, and where accurate modeling is essential for predicting their impact on health, visibility, and climate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。