Chronic treatment with novel nanoformulated micelles of rapamycin, Rapatar, protects diabetic heart against ischaemia/reperfusion injury

使用新型雷帕霉素纳米胶束 Rapatar 进行长期治疗可保护糖尿病心脏免受缺血/再灌注损伤

阅读:8
作者:Arun Samidurai, Fadi N Salloum, David Durrant, Olga B Chernova, Rakesh C Kukreja, Anindita Das

Background and purpose

Enhanced mammalian target of rapamycin (mTOR) signalling contributes to the pathogenesis of diabetes and plays a critical role in myocardial ischaemia/reperfusion (I/R) injury. Rapatar is a novel nanoformulated micellar of rapamycin, a putative inhibitor of mTOR that has been rationally designed to increase water solubility of rapamycin to facilitate p.o. administration and enhance bioavailability. We examined the effect of Rapatar on the metabolic status and protection against myocardial I/R injury in type 2 diabetic mice. Experimental approach: Adult male db/db mice were treated daily for 10 weeks with Rapatar (0.75 mg·kg-1 ·day-1 , p.o.) or vehicle. Isolated hearts were connected to a Langendorff perfusion system and subjected to global ischaemia (30 min) and reperfusion (1 h). Key

Purpose

Enhanced mammalian target of rapamycin (mTOR) signalling contributes to the pathogenesis of diabetes and plays a critical role in myocardial ischaemia/reperfusion (I/R) injury. Rapatar is a novel nanoformulated micellar of rapamycin, a putative inhibitor of mTOR that has been rationally designed to increase water solubility of rapamycin to facilitate p.o. administration and enhance bioavailability. We examined the effect of Rapatar on the metabolic status and protection against myocardial I/R injury in type 2 diabetic mice. Experimental approach: Adult male db/db mice were treated daily for 10 weeks with Rapatar (0.75 mg·kg-1 ·day-1 , p.o.) or vehicle. Isolated hearts were connected to a Langendorff perfusion system and subjected to global ischaemia (30 min) and reperfusion (1 h). Key

Results

Rapatar reduced fasting plasma glucose and triglyceride levels, prevented the gain in body weight and also improved glucose tolerance and insulin sensitivity in db/db mice compared with control. Cardiac function was improved following Rapatar treatment in db/db mice. Myocardial infarct size was reduced in Rapatar-treated mice with improved post-ischaemic rate-force product. Western blot analyses demonstrated a significant inhibition of phosphorylation of ribosomal protein S6 (downstream target of mTORC1), but not Akt (Ser473 , target of mTORC2) following chronic treatment with Rapatar. Rapatar also induced phosphorylation of AMPK, STAT3, ERK1/2 and glycogen synthase kinase 3β, without interfering with phosphorylation of p38.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。