Proteomic profiling of extracellular vesicles and particles reveals the cellular response to cisplatin in NSCLC

细胞外囊泡和颗粒的蛋白质组学分析揭示了 NSCLC 中细胞对顺铂的反应

阅读:4
作者:Jiaqi Xu, Lujuan Wang, Na Yin, Anqi Chen, Junqi Yi, Jingqun Tang, Juanjuan Xiang

Background

Cisplatin-based chemotherapy is a therapeutic strategy against non-small cell lung cancer (NSCLC). However, cancers relapse after chemotherapy due to a dormant state of residual cancer cells. Extracellular vesicles and particles (EVPs) are active carriers of proteins and nucleic acid. Here, we aimed to study the molecular alterations and proteomic characteristics of EPV in dormant and reactivated cancer cells induced by cisplatin.

Conclusion

Lipoproteins enriched in EVPs reflect the activated lipid metabolism in dormant cancer cells and may provide potential biomarkers or therapeutic targets for cisplatin-based therapy.

Methods

We used a short-term single dose of cisplatin to induce the dormant and reactivated cell status. We examined the gene expressional profiling and proteomic profiling of EVPs from dormant and reactivated cancer cells by RNA-sequencing and LC-MS/MS.

Results

We found substantial changes in gene expression and protein level in EVP. The genes with higher expression in dormant cancer cells were lipid transporter- and lipid metabolic-related genes. A total of 111 EVP proteins were upregulated in dormant cancer cells compared to those in control cells. Fifty differential expressed proteins (DEPs) were identified in EVPs from reactivated cancer cells compared to those in dormant cancer cells. Among the DEPs, we found that apolipoproteins such as APOA1 and APOE were significantly increased in dormant cancer cell-derived EVPs. Integration of EVP proteomes with transcriptional profiles of cancer cells revealed that the proteomic profiling of EVP derived from cancer cells can reflect the cellular status of cancer cells, which showed an activated lipid metabolism in dormant state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。