Exendin-4 reverts behavioural and neurochemical dysfunction in a pre-motor rodent model of Parkinson's disease with noradrenergic deficit

Exendin-4 可逆转患有去甲肾上腺素能缺陷的帕金森病运动前啮齿动物模型中的行为和神经化学功能障碍

阅读:6
作者:N Rampersaud, A Harkavyi, G Giordano, R Lever, J Whitton, Ps Whitton

Abstract

BACKGROUND AND PURPOSE Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss; however, the noradrenergic system exhibits degeneration as well. Noradrenergic deficit in PD may be responsible for certain non-motor symptoms of the pathology, including psychiatric disorders and cognitive decline. The aim of this study was to generate a pre-motor rodent model of PD with noradrenergic denervation, and to assess whether treatment with exendin-4 (EX-4), a glucagon-like peptide 1 receptor agonist, could reverse impairment exhibited by our model. EXPERIMENTAL APPROACH We generated a model of PD utilizing N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine and 6-hydroxydopamine to create partial lesions of both the noradrenergic and dopaminergic systems respectively. We then assessed the validity of our model using an array of behavioural paradigms and biochemical techniques. Finally, we administered EX-4 over a 1 week period to determine therapeutic efficacy. KEY RESULTS Our model exhibits anhedonia and decreased object recognition as indicated by a decrease in sucrose preference, increased immobility in the forced swim test and reduced novel object exploration. Tissue and extracellular dopamine and noradrenaline were reduced in the frontal cortex and striatum. TH+ cell counts decreased in the locus coeruleus and substantia nigra. Treatment with EX-4 reversed behavioural impairment and restored extracellular/tissue levels of both dopamine and noradrenaline and TH+ cell counts. CONCLUSION AND IMPLICATIONS We conclude that early treatment with EX-4 may reverse certain neuropsychiatric dysfunction and restore dopamine and noradrenaline content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。