Development of Second Generation Activity-Based Chemical Probes for Sirtuins

第二代基于活性的 Sirtuins 化学探针的开发

阅读:8
作者:Alyson M Curry, Elizabeth Barton, Wenjia Kang, Daniel V Mongeluzi, Yana Cen

Abstract

NAD+ (nicotinamide adenine dinucleotide)-dependent protein deacylases, namely, the sirtuins, are important cell adaptor proteins that alter cell physiology in response to low calorie conditions. They are thought to mediate the beneficial effects of calorie restriction to extend longevity and improve health profiles. Novel chemical probes are highly desired for a better understanding of sirtuin's roles in various biological processes. We developed a group of remarkably simple activity-based chemical probes for the investigation of active sirtuin content in complex native proteomes. These probes harbor a thioacyllysine warhead, a diazirine photoaffinity tag, as well as a terminal alkyne bioorthogonal functional group. Compared to their benzophenone-containing counterparts, these new probes demonstrated improved labeling efficiency and sensitivity, shortened irradiation time, and reduced background signal. They were applied to the labeling of individual recombinant proteins, protein mixtures, and whole cell lysate. These cell permeable small molecule probes also enabled the cellular imaging of sirtuin activity change. Taken together, our study provides new chemical biology tools and future drug discovery strategies for perturbing the activity of different sirtuin isoforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。