In vivo assembly of nanoparticle components to improve targeted cancer imaging

纳米粒子成分的体内组装以改善靶向癌症成像

阅读:8
作者:Steven D Perrault, Warren C W Chan

Abstract

Many small molecular anticancer agents are often ineffective at detecting or treating cancer due to their poor pharmacokinetics. Using nanoparticles as carriers can improve this because their large size reduces clearance and improves retention within tumors, but it also slows their rate of transfer from circulation into the tumor interstitium. Here, we demonstrate an alternative strategy whereby a molecular contrast agent and engineered nanoparticle undergo in vivo molecular assembly within tumors, combining the rapid influx of the smaller and high retention of the larger component. This strategy provided rapid tumor accumulation of a fluorescent contrast agent, 16- and 8-fold faster than fluorescently labeled macromolecule or nanoparticle controls achieved. Diagnostic sensitivity was 3.0 times that of a passively targeting nanoparticle, and this improvement was achieved 3 h after injection. The advantage of the in vivo assembly approach for targeting is rapid accumulation of small molecular agents in tumors, shorter circulation time requirements, possible systemic clearance while maintaining imaging sensitivity in the tumor, and nanoparticle anchors in tumors can be utilized to alter the pharmacokinetics of contrast agents, therapeutics, and other nanoparticles. This study demonstrates molecular assembly of nanoparticles within tumors, and provides a new basis for the future design of nanomaterials for medical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。