Subacute administration of both methcathinone and manganese causes basal ganglia damage in mice resembling that in methcathinone abusers

亚急性服用甲卡西酮和锰会导致小鼠的基底神经节损伤,类似于甲卡西酮滥用者的损伤

阅读:9
作者:Andres Asser, Atsuko Hikima, Mari Raki, Kim Bergström, Sarah Rose, Julius Juurmaa, Villem Krispin, Mari Muldmaa, Stella Lilles, Hanna Rätsep, Peter Jenner, Sulev Kõks, Pekka T Männistö, Pille Taba

Abstract

An irreversible extrapyramidal syndrome occurs in man after intravenous abuse of "homemade" methcathinone (ephedrone, Mcat) that is contaminated with manganese (Mn) and is accompanied by altered basal ganglia function. Both Mcat and Mn can cause alterations in nigrostriatal function but it remains unknown whether the effects of the 'homemade' drug seen in man are due to Mcat or to Mn or to a combination of both. To determine how toxicity occurs, we have investigated the effects of 4-week intraperitoneal administration of Mn (30 mg/kg t.i.d) and Mcat (100 mg/kg t.i.d.) given alone, on the nigrostriatal function in male C57BL6 mice. The effects were compared to those of the 'homemade' mixture which contained about 7 mg/kg of Mn and 100 mg/kg of Mcat. Motor function, nigral dopaminergic cell number and markers of pre- and postsynaptic dopaminergic neuronal integrity including SPECT analysis were assessed. All three treatments had similar effects on motor behavior and neuronal markers. All decreased motor activity and induced tyrosine hydroxylase positive cell loss in the substantia nigra. All reduced 123I-epidepride binding to D2 receptors in the striatum. Vesicular monoamine transporter 2 (VMAT2) binding was not altered by any drug treatment. However, Mcat treatment alone decreased levels of the dopamine transporter (DAT) and Mn alone reduced GAD immunoreactivity in the striatum. These data suggest that both Mcat and Mn alone could contribute to the neuronal damage caused by the 'homemade' mixture but that both produce additional changes that contribute to the extrapyramidal syndrome seen in man.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。