Estimation of Aspect Ratio of Cellulose Nanocrystals by Viscosity Measurement: Influence of Aspect Ratio Distribution and Ionic Strength

通过粘度测量估计纤维素纳米晶体的长宽比:长宽比分布和离子强度的影响

阅读:5
作者:Qiang Wu, Xiuwen Li, Qian Li, Siqun Wang, Yan Luo

Abstract

The influence of the cellulose nanocrystal (CNC) aspect ratio (L/d) distribution and ionic strength of different salts on the L/d estimation by viscosity measurement were investigated. The L/d distribution was controlled by mixing two CNC, with different L/d, which were prepared by acid hydrolysis from wood and bacterial cellulose. The results demonstrated that the L/d distribution did not affect the accuracy of the CNC L/d estimated by viscosity measurements using the Batchelor equation, and the calculated L/d was the number-average L/d. Moreover, monovalent (NaCl), divalent (CaCl2), and trivalent (AlCl3) salts were chosen to study the influence of ionic strength on the CNC L/d estimation by viscosity measurement. It was found that NaCl and CaCl2 could be added to the CNC suspension to screen the electro-viscous effect and estimate the actual physical CNC L/d by viscosity measurement, and the content of NaCl and CaCl2 can be predicted by the Debye-Hückel theory. However, a small amount of AlCl3 induced CNC aggregation and increased intrinsic viscosity and predicted L/d.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。