Angiotensin(1-7) attenuates tooth movement and regulates alveolar bone response during orthodontic force application in experimental animal model

血管紧张素(1-7)在实验动物模型中减弱牙齿移动并调节正畸施力过程中牙槽骨的反应

阅读:7
作者:Hatem Abuohashish, Suliman Shahin, Abdulaziz Alamri, Zainah Salloot, Hussain Alhawaj, Omar Omar

Background

Renin-angiotensin system and its ACE2/Ang(1-7)/Mas receptor axis regulates skeletal response to multiple physiological and pathological conditions. Recent research suggested a vital role of Ang(1-7) in regulating alveolar bone metabolism and remodeling. In this context, this study evaluated the effects of the Ang(1-7)/Mas receptor axis on orthodontic tooth movement (OTM) and the alveolar bone response to mechanical load.

Conclusion

Collectively, the activation of Ang(1-7)/Mas receptor axis appears to hinder tooth movement and regulates alveolar bone remodeling in response to mechanical force.

Methods

A coil spring was placed between the right maxillary first molar and the anterior tooth of Wistar rats to apply bidirectional mechanical force. Ang(1-7) with or without a specific Mas receptor antagonist (A779) was infused using subcutaneous osmotic pumps (200 and 400 ng/kg/min: respectively). Animals were killed after 5 and 14 days from the OTM procedure after the clinical evaluation of tooth movement and mobility. Morphometric analysis of alveolar bone structure was conducted using micro-CT and the histological picture was evaluated after H&E staining. Moreover, collagen fiber distribution was assessed using Picro-Sirius red stain. In addition, bone samples were collected from the pressure and tension sites around the anterior tooth for gene expression analysis.

Results

Ang(1-7) infusion suppressed the tooth movement and mobility after 14 days of the orthodontic force application. Additionally, Ang(1-7) infusion preserved the morphometric and histological structure of the alveolar bone at pressure and tension sides. These effects were abolished by adding A779 infusion. Collagen fiber distribution was dysregulated mainly by the A779 Mas receptor blockage. Ang(1-7) affected the bone formation, remodeling- and vascularity-related genes in the pressure and tension sides, suggesting a prominent suppression of osteoclastogenesis. Ang(1-7) also improved osteoblasts-related genes on the tension side, whereas the osteoclasts-related genes were augmented by A779 on the pressure side.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。