Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8+ T cell activity and biomarker during the evolution of Type 1 Diabetes

β 细胞外囊泡 PD-L1 作为 1 型糖尿病演变过程中 CD8+ T 细胞活性的新调节剂和生物标志物

阅读:5
作者:Chaitra Rao, Daniel T Cater, Saptarshi Roy, Jerry Xu, Andre De G Olivera, Carmella Evans-Molina, Jon D Piganelli, Decio L Eizirik, Raghavendra G Mirmira, Emily K Sims

Conclusions/interpretation

IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8 T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in islet autoantibody positive patients compared to controls. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.

Methods

Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry, and ELISA. EV PD-L1: PD-1 binding was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8 T cells. Plasma EV and soluble PD-L1 were assayed in plasma of individuals with islet autoantibody positivity (Ab+) or recent-onset type 1 diabetes and compared to non-diabetic controls.

Results

PD-L1 protein colocalized with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. 24-h IFN-α or IFN-γ treatment induced a two-fold increase in EV PD-L1 cargo without a corresponding increase in number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8 T cells. Plasma EV PD-L1 levels were increased in islet Ab+ individuals, particularly in those with single Ab+, Additionally, in from individuals with either Ab+ or type 1 diabetes, but not in controls, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV-PD-L1 could be protective for residual beta cell function. Conclusions/interpretation: IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8 T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in islet autoantibody positive patients compared to controls. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。