L-arginase induces vascular dysfunction in old spontaneously hypertensive rats

L-精氨酸酶诱发老年自发性高血压大鼠的血管功能障碍

阅读:6
作者:O Arishe, J McKenzie, F Priviero, A B Ebeigbe, R Clinton Webb

Background

Aging is a major non-modifiable risk factor for hypertension. Changes in aging are similar to those seen in hypertension in the vasculature. Also, aging increases the vascular dysfunction that occurs in hypertension. L-arginase action reduces substrate (L-arginine) availability for the formation of nitric oxide (NO). This reduces the level of NO and leads to reduced vasodilation and ultimately, vascular dysfunction. This study examines the hypothesis that age-dependent vascular dysfunction in SHRs is mediated by arginase.

Conclusions

Arginase impairs both endothelium-dependent and -independent vasorelaxation responses, through the NO signaling pathway.

Methods

Young (12-14 weeks) and old (11-12 months) male Wistar and spontaneously hypertensive rats (SHR) were used. Mean arterial pressure (MAP) was measured in the rats. They were then euthanized and mesenteric resistance arteries (MRAs) and thoracic aortae were excised and placed in ice-cold physiological salt solution (PSS). Arterial segments were either snap-frozen in liquid nitrogen and stored for immunoblotting studies or cut into 2mm rings for reactivity studies. Cumulative concentration-response curves to acetylcholine (Ach: 10-9 - 3x10-5M) and sodium nitroprusside (SNP: 10-12 - 3x10-5 M) were performed in the absence or presence (30-minute exposure) of L-arginase, 0.05U/ML (MRA) or 0.5U/ML (aorta). Vessels were pre-contracted with phenylephrine (PE; 3x10-6M).

Results

MAP increased during aging in the SHRs p<0.05 but not in the Wistar rats. Arginase impaired the endothelium-dependent relaxation responses of thoracic aortic and MRA arterial rings to Ach in the old Wistars and SHRs (Emax aorta: 29.42±2.19% vs 7.94±1.86%). Arginase also impaired endothelium-independent relaxation response to SNP in the old SHRs only (Emax aorta: 88.62±4.10% vs 31.45±10.61%). We also observed no differences in the serum arginase activity in the four groups of rats. On the contrary, arginase activity in the aortae of young Wistar rats was reduced compared to other groups. Conclusions: Arginase impairs both endothelium-dependent and -independent vasorelaxation responses, through the NO signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。