A lactate-responsive gene signature predicts the prognosis and immunotherapeutic response of patients with triple-negative breast cancer

乳酸反应基因特征可预测三阴性乳腺癌患者的预后和免疫治疗反应

阅读:6
作者:Kaixiang Feng, Youcheng Shao, Jun Li, Xiaoqing Guan, Qin Liu, Meishun Hu, Mengfei Chu, Hui Li, Fangfang Chen, Zongbi Yi, Jingwei Zhang

Background

Increased glycolytic activity and lactate production are characteristic features of triple-negative breast cancer (TNBC). The

Conclusion

We identified an LRG signature in TNBC, which could be used to predict the prognosis of patients with TNBC and gauge their response to immunotherapy. Our findings may help guide the precision treatment of patients with TNBC.

Methods

Lactate levels were initially measured in different breast cancer (BC) cell types. Subsequently, MDA-MB-231 cells treated with 2-Deoxy-d-glucose or l-lactate were subjected to RNA sequencing (RNA-seq). The gene set variation analysis algorithm was utilized to calculate the lactate-responsive score, conduct a differential analysis, and establish an association with the extent of immune infiltration. Consensus clustering was then employed to classify TNBC patients. Tumor immune dysfunction and exclusion, cibersort, single-sample gene set enrichment analysis, and EPIC, were used to compare the tumor-infiltrating immune cells between TNBC subtypes and predict the response to immunotherapy. Furthermore, a prognostic model was developed by combining 98 machine learning algorithms, to assess the predictive significance of the LRG signature. The predictive value of immune infiltration and the immunotherapy response was also assessed. Finally, the association between lactate and various anticancer drugs was examined based on expression profile similarity principles.

Results

We found that the lactate levels of TNBC cells were significantly higher than those of other BC cell lines. Through RNA-seq, we identified 14 differentially expressed LRGs in TNBC cells under varying lactate levels. Notably, this LRG signature was associated with interleukin-17 signaling pathway dysregulation, suggesting a link between lactate metabolism and immune impairment. Furthermore, the LRG signature was used to categorize TNBC into two distinct subtypes, whereby Subtype A was characterized by immunosuppression, whereas Subtype B was characterized by immune activation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。