A simple method for detection of a novel coronavirus (SARS-CoV-2) using one-step RT-PCR followed by restriction fragment length polymorphism

一种使用一步法 RT-PCR 结合限制性片段长度多态性检测新型冠状病毒 (SARS-CoV-2) 的简便方法

阅读:14
作者:Ho Anh Son, Dinh Thi Thu Hang, Nghiem Duc Thuan, Le Thi Bao Quyen, Luong Thi Hoai Thuong, Vu Thi Nga, Le Bach Quang, Trinh Thanh Hung, Nguyen Thai Son, Nguyen Tung Linh, Le Van Nam, Nguyen Van Ba, Tran Viet Tien, Do Quyet, Hoang Van Luong, Hoang Xuan Su

Abstract

A novel coronavirus associated with acute respiratory disease (named SARS-CoV-2) is recently identified in Wuhan city, China, spread rapidly worldwide. Early identification of this novel coronavirus by molecular tools is critical for surveillance and control of the epidemic outbreak. We aimed to establish a simple method for the detection of SARS-CoV-2 in differentiating with SARS-CoV. Primers of our in-house reverse transcription polymerase chain reaction (RT-PCR) assays were designed to target conserved regions of the RdRP gene and E gene, selected restriction enzymes EcoRI, Tsp45I, and AluI to distinguish between SARS-CoV-2 and SARS-CoV. In this report, a 396-bp fragment of the RdRp gene and 345-bp fragment of the E gene were amplified by one-step RT-PCR. Enzyme Tsp45I cuts the RdRP-amplified product of SARS-CoV-2 generating three fragments of 45, 154, and 197 bp, but it did not cut the amplicon of SARS-CoV. In contrast, the amplified product of SARS-CoV was digested with EcoRI producing two fragments of 76 and 320 bp, whereas the amplicon of SARS-CoV-2 was undigested by Tsp45I help to distinguish clearly SARS-CoV-2 from SARS-CoV on gel electrophoresis. In addition, AluI cut the amplicon of the E gene of SARS-CoV-2 generating two fragments of 248 and 97 bp without cutting to SARS-CoV. The accuracy of the assay was confirmed by sequencing and phylogenetic analysis. When evaluated on clinical samples showed a high sensitivity of 95%, specificity of our assay was 100% and clinical performance for detection of SARS-CoV-2 in comparison with other reference assays. In conclusion, in the present study, we successfully developed a simple method for molecular detection of SARS-CoV-2 in differentiating with SARS-CoV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。