Discovery and Transcriptional Profiling of Penicillium digitatum Genes That Could Promote Fungal Virulence during Citrus Fruit Infection

发现并转录分析可在柑橘果实感染期间促进真菌毒力的指状青霉菌基因

阅读:9
作者:Paloma Sánchez-Torres, Luis González-Candelas, Ana Rosa Ballester

Abstract

Green mold caused by Penicillium digitatum (Pers.:Fr.) Sacc is the most prevalent postharvest rot concerning citrus fruits. Using the subtractive suppression hybridization (SSH) technique, different P. digitatum genes have been identified that could be involved in virulence during citrus infection in the early stages, a crucial moment that determines whether the infection progresses or not. To this end, a comparison of two P. digitatum strains with high and low virulence has been carried out. We conducted a study on the gene expression profile of the most relevant genes. The results indicate the importance of transcription and regulation processes as well as enzymes involved in the degradation of the plant cell wall. The most represented expressed sequence tag (EST) was identified as PDIP_11000, associated with the FluG domain, which is putatively involved in the activation of conidiation. It is also worth noting that PDIP_02280 encodes a pectin methyl esterase, a cell wall remodeling protein with a high expression level in the most virulent fungal strains, which is notably induced during citrus infection. Furthermore, within the group with the greatest representation and showing significant induction in the early stages of infection, regulatory proteins (PDIP_68700, PDIP_76160) and a chaperone (PDIP_38040) stand out. To a lesser extent, but not less relevant, it is worth distinguishing different regulatory proteins and transcription factors, such as PDIP_00580, PDIP_49640 and PDIP_78930.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。