A single TRPV1 amino acid controls species sensitivity to capsaicin

单个 TRPV1 氨基酸控制物种对辣椒素的敏感性

阅读:5
作者:Ying Chu, Bruce E Cohen, Huai-Hu Chuang

Abstract

Chili peppers produce capsaicin (a vanilloid) that activates the transient receptor potential cation channel subfamily V member 1 (TRPV1) on sensory neurons to alter their membrane potential and induce pain. To identify residues responsible for differential TRPV1 capsaicin sensitivity among species, we used intracellular Ca2+ imaging to characterize chimeras composed of capsaicin-sensitive rat TRPV1 (rTRPV1) and capsaicin-insensitive chicken TRPV1 (cTRPV1) exposed to a series of capsaicinoids. We found that chimeras containing rat E570-V686 swapped into chicken receptors displayed capsaicin sensitivity, and that simply changing the alanine at position 578 in the S4-S5 helix of the chicken receptor to a glutamic acid was sufficient to endow it with capsaicin sensitivity in the micromolar range. Moreover, introduction of lysine, glutamine or proline at residue A578 also elicited capsaicin sensitivity in cTRPV1. Similarly, replacing corresponding rTRPV1 residue E570 with lysine or glutamine retained capsaicin sensitivity. The hydrophilic capsaicin analog Cap-EA activated a cTRPV1-A578E mutant, suggesting that A578 may participate in vanilloid binding. The hydrophilic vanilloid agonist zingerone did not activate any A578 mutants with capsaicin sensitivity, suggesting that the vanilloid group alone is not sufficient for receptor activation. Our study demonstrates that a subtle modification of TRPV1 in different species globally alters capsaicin responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。