Altered microRNA expression profiles in lung damage induced by nanosized SiO2

纳米 SiO2 诱发的肺损伤中 microRNA 表达谱的改变

阅读:5
作者:Hong Yang, Yingjian Zhang, Wenchao Li, Canshan Lao, Mingyue Li, Yi Zheng

Abstract

The objective of the present research is to explore miRNAs expression profiles in lung tissue of rat treated by nanosized SiO2 in the light of normal at diverse dosages, time, predict their target genes, and probe the biological function and regulation of miRNA in the lung damage process caused by nanosized SiO2. Up-regulation of rno-miR-208, rno-miR-212 and rno-miR-18a in lung tissue mainly characterized by inflammation of SD rats caused by nanosized SiO2 particles instilled intratracheally at 7th, 15th 30th d using Illumina HiSeq2000 sequencing technique and were further verified by quantitative reverse transcriptase polymerase chain reaction (qRT PCR) assay. Lung damage is mainly with characteristics of lung interstitial fibrosis, upregulation of rno-miR-212, rno-miR-144, rno-miR-702-3p, rno-miR-379 and rno-miR-127, down-regulation of rno-miR-541 at 60th, 90th d post-exposure. As target genes of rno-miR-208, rno-miR-212 and rno-miR-18a respectively, there was no statistical significance of programmed cell death 4 (PDCD4), LIN28B and connective tissue growth factor (CTGF) mRNA expression level (P > 0.05) compared to β-actin as internal controls detected by Real-time quantitative PCR. The differences in protein gray value ratio of PDCD4, LIN28B and CTGF detected by Western blotting test were statistically significant (P < 0.05). These results suggested that miR-208, miR-212 and miR-18a may take effects in rats' lung damage lead by nanosized SiO2. Their target genes of PDCD4, LIN28B and CTGF functioned in translation level of target genes in regulation of inflammatory signaling pathways and involved in the formation of tissue fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。