Biosensor-based spatial and developmental mapping of maize leaf glutamine at vein-level resolution in response to different nitrogen rates and uptake/assimilation durations

基于生物传感器的玉米叶谷氨酰胺在叶脉水平分辨率下的空间和发育映射,以响应不同的氮速率和吸收/同化持续时间

阅读:5
作者:Travis L Goron, Manish N Raizada

Background

The amino acid glutamine (Gln) is a primary transport form of nitrogen in vasculature following root uptake, critical for the location/timing of growth in maize and other cereals. Analytical chemistry

Conclusions

The GlnLux technology enabled the most detailed map of relative Gln accumulation in any plant, and the first report of in situ Gln at vein-level resolution. The technology might be used with any plant species in a similar manner.

Results

Here, maize seedlings were given different N rates for multiple uptake/assimilation durations, after which > 1500 leaf disk extracts were analyzed. A second technique permitted in situ imaging of Gln for all leaves sampled simultaneously. We demonstrate that multifactorial interactions govern Gln accumulation involving position within each leaf (mediolateral/proximodistal), location of leaves along the shoot axis, N rate, and uptake duration. In situ imaging localized Gln in leaf veins for the first time. A novel hypothesis is that leaf Gln may flow along preferential vascular routes, for example in response to mechanical damage or metabolic needs. Conclusions: The GlnLux technology enabled the most detailed map of relative Gln accumulation in any plant, and the first report of in situ Gln at vein-level resolution. The technology might be used with any plant species in a similar manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。