Designing plant-transparent agrivoltaics

设计植物透明的农业光伏电池

阅读:5
作者:Eric J Stallknecht #, Christopher K Herrera #, Chenchen Yang, Isaac King, Thomas D Sharkey, Richard R Lunt, Erik S Runkle

Abstract

Covering greenhouses and agricultural fields with photovoltaics has the potential to create multipurpose agricultural systems that generate revenue through conventional crop production as well as sustainable electrical energy. In this work, we evaluate the effects of wavelength-selective cutoffs of visible and near-infrared (biologically active) radiation using transparent photovoltaic (TPV) absorbers on the growth of three diverse, representative, and economically important crops: petunia, basil, and tomato. Despite the differences in TPV harvester absorption spectra, photon transmission of photosynthetically active radiation (PAR; 400-700 nm) is the most dominant predictor of crop yield and quality. This indicates that different wavebands of blue, red, and green are essentially equally important to these plants. When the average photosynthetic daily light integral is > 12 mol m-2 d-1, basil and petunia yield and quality is acceptable for commercial production. However, even modest decreases in TPV transmission of PAR reduces tomato growth and fruit yield. These results identify crop-specific design requirements that exist for TPV harvester transmission and the necessity to maximize transmission of PAR to create the most broadly applicable TPV greenhouse harvesters for diverse crops and geographic locations. We determine that the deployment of 10% power conversion efficiency (PCE) plant-optimized TPVs over approximately 10% of total agricultural and pasture land in the U.S. would generate 7 TW, nearly double the entire energy demand of the U.S.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。