Adjusted green spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form and spiked human plasma sample using different chemometric supported models

使用不同的化学计量学支持模型对药物形式和加标人血浆样品中的法匹拉韦和瑞德西韦进行调整绿分光光度测定

阅读:5
作者:Mohamed S Imam, Ahmed H Abdelazim, Sherif Ramzy, Afnan S Batubara, Mohammed Gamal, Safwan Abdelhafiz, Abdallah M Zeid

Abstract

The environmentally friendly design of analytical methods is gaining interest in pharmaceutical analysis to reduce hazardous environmental impacts and improve safety and health conditions for analysts. The adaptation and integration of chemometrics in the development of environmentally friendly analytical methods is strongly recommended in the hope of promising benefits. Favipiravir and remdesivir have been included in the COVID-19 treatment guidelines panel of several countries. The main objective of this work is to develop green, tuned spectrophotometric methods based on chemometric based models for the determination of favipiravir and remdesivir in spiked human plasma. The UV absorption spectra of favipiravir and remdesivir has shown overlap to some extent, making simultaneous determination difficult. Three advanced chemometric models, classical least squares, principal component regression, and partial least squares, have been developed to provide resolution and spectrophotometric determination of the drugs under study. A five-level, two-factor experimental design has been used to create the described models. The spectrally recorded data of favipiravir and remdesivir has been reviewed. The noise region has been neglected as it has a negative impact on the significant data. On the other hand, the other spectral data provided relevant information about the investigated drugs. A comprehensive evaluation and interpretation of the results of the described models and a statistical comparison with accepted values have been considered. The proposed models have been successfully applied to the spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form spiked human plasma. In addition, the environmental friendliness of the described models was evaluated using the analytical eco-scale, the green analytical procedure index and the AGREE evaluation method. The results showed the compliance of the described models with the environmental characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。