Carbonate system in the Cabo Frio upwelling

卡波弗里奥上升流中的碳酸盐系统

阅读:6
作者:Carlos Augusto Ramos E Silva, Livia Viana de Godoy Fernandes, Flavo Elano Soares de Souza, Humberto Marotta, Flavio da Costa Fernandes, Thaise Machado Senez Mello, Nicole Silva Caliman Monteiro, Anderson Araújo Rocha, Ricardo Coutinho, Lohengrin Dias de Almeida Fernandes, Raimundo Nonato Damasceno, 

Abstract

The quantitative assessment of the carbonate system represents one of the biggest challenges toward the "Sustainable Development Goals" defined by the United Nations in 2015. In this sense, the present study investigated the Spatio-temporal dynamics of the carbonate system and the effects of the El Niño and La Niña phenomena over the Cabo Frio upwelling area. The physical characterization of the site was carried out through data on wind speed and sea surface temperature. Water samples were also collected during the oceanographic cruise onboard the Diadorim R/V (Research Vessel). From these samples, the parameters of absolute and practical salinity, density, pH, total alkalinity, carbonate, calcite, aragonite, bicarbonate dissolved inorganic carbon, carbon dioxide, partial pressure of carbon, calcium, and total boron were obtained. The highest average concentration of bicarbonate in S1 (2018 µmol/kg) seems to contribute to the dissolved inorganic carbon values (2203 µmol/kg). The values of calcite saturation state, aragonite saturation state, and carbonate were higher on the surface of each station (calcite saturation state = 4.80-5.48; aragonite saturation state = 3.10-3.63, and carbonate = 189-216 µmol/kg). The mean values of pH were similar in the day/night samples (7.96/7.97). The whole carbonate system was calculated through thermodynamic modeling with the Marine Chemical Analysis (AQM) program loaded with the results of the following parameters: temperature, salinity, total alkalinity, and pH parameters. This manuscript presents original data on the carbonate system and the "acidification" process influenced by the Cabo Frio upwelling, which directly depends on the El Niño and La Niña phenomena oscillations in the sea surface temperature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。