The role of loops B and C in determining the potentiation of GABAA receptors by midazolam

环和 C 环在咪达唑仑增强 GABAA 受体中的作用

阅读:12
作者:Olivia A Moody, Andrew Jenkins

Abstract

Many benzodiazepines are positive allosteric modulators (PAMs) of GABAA receptors that cause sedation, hypnosis, and anxiolysis. Benzodiazepines bind GABAA receptors at the extracellular interface of the α and γ subunits. Within the α subunit, the benzodiazepine binding site is defined by three highly conserved structural loops, loops A-C. Although previous mutagenesis studies have identified His102 in Loop A as important for benzodiazepine modulation of GABAA receptors, the functional roles of many of the other conserved residues in loops A-C remain incompletely understood. In this study, we made single mutations in loops A-C of the benzodiazepine binding-site across all six α subunits. We used whole-cell patch clamp recording to measure the functional effects of these mutations on midazolam potentiation. The results showed that mutating the threonine in loop B and serine in loop C (Thr163 and S206 in human α1) did not abolish the receptors' responsiveness to midazolam, as the α1(H102R) mutation did. The loop C mutations exhibited a novel array of α-isoform specific effects on midazolam potentiation. The α3(S230I) and α5(S209I) mutations had the largest effect on midazolam potentiation, increasing the efficacy of midazolam. Novel benzodiazepines targeting loop C may represent a future direction for designing new drugs that specifically alter the activity of α3- and α5-containing GABAA receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。