Botulinum Toxin Type A Possibly Affects Cav3.2 Calcium Channel Subunit in Rats with Spinal Cord Injury-Induced Muscle Spasticity

型肉毒杆菌毒素可能影响脊髓损伤诱发肌肉痉挛大鼠的 Cav3.2 钙通道亚基

阅读:7
作者:Kening Ma, Dan Zhu, Chunguo Zhang, Lijie Lv

Discussion

BoT-A Botox possibly attenuates SCI-induced muscle spasticity by affecting the expression of Cav3.2 calcium channel subunit in the rat models. There may be multiple mechanisms for the function of BoT-A Botox. Further work is needed to be done to address these issues.

Methods

A rat model with muscle spasticity was established after SCI via contusion and compression. Different concentrations (0, 1, 3 and 6 U/kg) of BoT-A Botox were injected in the extensor digitorum longus (EDL) muscles of the right hindlimb in the muscle spasticity model. The changes of muscle spasticity and calcium level in EDL muscles were measured after the establishment of SCI-induced spasticity. Cav3.2 calcium channel subunit and its mutant (M1560V) were analyzed using Western blot before (input) or after immunoprecipitation with anti-FLAG antibody, and their currents were measured in motoneurons by using whole-cell voltage clamp recordings.

Results

SCI induced muscle spasticity, whereas calcium level in EDL muscles and expression of Cav3.2 was increased in the SCI model when compared with the sham group (p < 0.05). BoT-A Botox treatment significantly reduced muscle spasticity and calcium level in EDL muscles and Cav3.2 expression in a dose-dependent way (p < 0.05). The ratio of biotinylated to total Cav3.2 was reduced in the mutant (M1560V) of Cav3.2 and lower than that in the wild Cav3.2. BoT-A Botox intervention also reduced the current values of calcium channel and the ratio in a dose-dependent way (p < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。