Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy

接受舌下双重免疫治疗的受试者的表观遗传修饰和调节性 T 细胞功能的改善

阅读:4
作者:Ravi S Swamy, Neha Reshamwala, Tessa Hunter, Soujanya Vissamsetti, Carah B Santos, Fuad M Baroody, Peter H Hwang, Elisabeth G Hoyte, Marco A Garcia, Kari C Nadeau

Background

Allergen-specific immunotherapy is the only mode of therapy that has been demonstrated to offer a cure in patients with IgE-mediated respiratory allergies.

Conclusion

The results of this pilot study suggest that dual SLIT could be an effective means to treat subjects with sensitivities to a variety of allergens and that long-term tolerance might be induced by epigenetic modifications of Foxp3 in memory regulatory T cells.

Methods

The safety and efficacy of dual SLIT with TG and DM in children and adults with demonstrated allergies to TG and DM were investigated in a single-center, randomized, double-blind, controlled phase I study. Thirty subjects received either TG and DM dual SLIT (n= 20) or placebo (n = 10). Immune parameters were evaluated for differentiation of desensitized subjects from control subjects.

Objective

We sought to demonstrate the safety and efficacy of timothy grass (TG) and dust mite (DM) dual sublingual immunotherapy (SLIT) and to begin to investigate the immune mechanisms involved in successful immunotherapy with multiple allergens.

Results

Subjects treated with dual SLIT had decreased rhinoconjunctivitis scores (P < .001) and medication use scores (P < .001) and reduced responses to TG and DM allergen based on results of skin prick tests or nasal disk challenges (P < .01 and P < .001, respectively) compared with placebo-treated control subjects. An increase in TG- and DM-specific IgG(4) levels, reduced allergen-specific IgE levels, and subsequent basophil activation were observed in the active treatment group. Dual SLIT promoted allergen-specific suppressive CD4(+)CD25(high)CD127(low)CD45RO(+) forkhead box protein 3 (Foxp3)(+) memory regulatory T cells with reduced DNA methylation of CpG sites within the Foxp3 locus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。