Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling

四跨膜蛋白 1 通过 PI3K/AKT 信号传导促进胆管癌的上皮-间质转化和转移

阅读:9
作者:Yan Wang, Yingjian Liang, Guangchao Yang, Yaliang Lan, Jihua Han, Jiabei Wang, Dalong Yin, Ruipeng Song, Tongsen Zheng, Shugeng Zhang, Shangha Pan, Xirui Liu, Mingxi Zhu, Yao Liu, Yifeng Cui, Fanzheng Meng, Bo Zhang, Shuhang Liang, Hongrui Guo, Yufeng Liu, Md Khaled Hassan, Lianxin Liu

Background

Numerous studies have demonstrated that tetraspanin 1 (TSPAN1), a transmembrane protein, functions as an oncoprotein in many cancer types. However, its role and underlying molecular mechanism in cholangiocarcinoma (CCA) progression remain unclear.

Conclusion

The results indicate that TSPAN1 could be a potential therapeutic target for CCA.

Methods

In the present study, the expression of TSPAN1 in human CCA and adjacent nontumor tissues was examined using real-time PCR, western blot and immunohistochemistry. The effect of TSPAN1 on proliferation and metastasis was evaluated by functional assays both in vitro and in vivo. A luciferase reporter assay was performed to investigate the interaction between microRNA-194-5p (miR-194-5p) and TSPAN1 3'-untranslated region. Co-immunoprecipitation (co-IP) was used to confirm the interaction between TSPAN1 protein and integrin α6β1 and western blot was used to explore TSPAN1 mechanism.

Results

We found that TSPAN1 was frequently upregulated in CCA and high levels of TSPAN1 correlated with TNM stage, especially metastasis in CCA. TSPAN1 overexpression promoted CCA growth, metastasis, and induced epithelial-to-mesenchymal transition (EMT), while its silencing had the opposite effect both in vitro and in vivo. To explore the differential expression of TSPAN1, we screened miR-194-5p as the upstream regulator of TSPAN1. A combination of high-level TSPAN1 and low-level miR-194-5p predicted poor prognosis in patients with CCA. Furthermore, in accordance with the functional characteristics of the TSPAN superfamily, we proved that TSPAN1 interacted with integrin α6β1 to amplify the phosphoinositide-3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3β/Snail family transcriptional repressor (Snail)/phosphatase and tensin homolog (PTEN) feedback loop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。