Transmembrane 163 (TMEM163) protein effluxes zinc

跨膜 163 (TMEM163) 蛋白外排锌

阅读:7
作者:Vanessa B Sanchez, Saima Ali, Adrian Escobar, Math P Cuajungco

Abstract

Recent investigations of rodent Tmem163 suggest that it binds to and transports zinc as a dimer, and that alanine mutagenesis of its two species-conserved aspartate (D123A/D127A) residues proposed to bind zinc, perturbs protein function. Direct corroboration, however, is lacking whether it is an influx or efflux transporter in cells. We hypothesized that human TMEM163 is a zinc effluxer based on its predicted protein characteristics. We used cultured human cell lines that either stably or transiently expressed TMEM163, and pre-loaded the cells with zinc to determine transport activity. We found that TMEM163-expressing cells exhibited significant reduction of intracellular zinc levels as evidenced by two zinc-specific fluorescent dyes and radionuclide zinc-65. The specificity of the fluorescence signal was confirmed upon treatment with TPEN, a high-affinity zinc chelator. Multiple sequence alignment and phylogenetic analyses showed that TMEM163 is related to distinct members of the cation diffusion facilitator (CDF) protein family. To further characterize the efflux function of TMEM163, we substituted alanine in two homologous aspartate residues (D124A/D128A) and performed site-directed mutagenesis of several conserved amino acid residues identified as non-synonymous single nucleotide polymorphism (S61R, S95C, S193P, and E286K). We found a significant reduction of zinc efflux upon cellular expression of D124A/D128A or E286K protein variant when compared with wild-type, suggesting that these particular amino acids are important for normal protein function. Taken together, our findings demonstrate that TMEM163 effluxes zinc, and it should now be designated ZNT11 as a new member of the mammalian CDF family of zinc efflux transporters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。