Proteome-wide acetylation dynamics in human cells

人类细胞中蛋白质组范围内的乙酰化动力学

阅读:5
作者:Yekaterina Kori, Simone Sidoli, Zuo-Fei Yuan, Peder J Lund, Xiaolu Zhao, Benjamin A Garcia

Abstract

Protein acetylation plays a critical role in biological processes by regulating the functions and properties of proteins. Thus, the study of protein acetylation dynamics is critical for understanding of how this modification influences protein stability, localization, and function. Here we performed a comprehensive characterization of protein acetylation dynamics using mass spectrometry (MS) based proteomics through utilization of 13C-glucose or D3-acetate, which are metabolized into acetyl-coA, labeling acetyl groups through subsequent incorporation into proteins. Samples were collected at eight time points to monitor rates and trends of heavy acetyl incorporation. Through this platform, we characterized around 1,000 sites with significantly increasing acetylation trends, which we clustered based on their rates of acetylation. Faster rates were enriched on proteins associated with chromatin and RNA metabolism, while slower rates were more typical on proteins involved with lipid metabolism. Among others, we identified sites catalyzed at faster rates with potential critical roles in protein activation, including the histone acetyltransferase p300 acetylated in its activation loop, which could explain self-acetylation as an important feedback mechanism to regulate acetyltransferases. Overall, our studies highlight the dynamic nature of protein acetylation, and how metabolism plays a central role in this regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。