ELK1 has a dual activating and repressive role in human embryonic stem cells

ELK1 在人类胚胎干细胞中具有双重激活和抑制作用

阅读:6
作者:Ian Prise, Andrew D Sharrocks

Background

The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex.

Conclusions

ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.

Methods

Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression.

Results

We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。