Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways

二甲双胍通过靶向 AMPK/mTORC1 和 mTORC2 通路诱导骨髓瘤自噬和 G0/G1 期细胞周期停滞

阅读:6
作者:Yan Wang, Wenbin Xu, Zixun Yan, Weili Zhao, Jianqing Mi, Junmin Li, Hua Yan

Background

Metformin is a commonly used drug for the treatment of diabetes. Accumulating evidence suggests that it exerts anti-tumor effects in many cancers, including multiple myeloma (MM); however, the underlying molecular mechanisms have not been clearly elucidated.

Conclusions

Metformin inhibits the proliferation of myeloma cells by inducing autophagy and cell-cycle arrest. Our results suggest that the molecular mechanism involves dual repression of mTORC1 and mTORC2 pathways via AMPK activation. Our study provides a theoretical basis for the development of novel strategies for the treatment of MM using metformin as an already approved and safe drug.

Methods

The anti-myeloma effects of metformin were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo NOD-SCID murine xenograft MM model. Cell viability was assessed with CCK8 and cell proliferation was measured by EdU incorporation assay. Cell cycle distribution and apoptosis were examined by flow cytometry. Transmission electron microscopy was used to visualized autophagosomes. Activation of AMPK and inhibition of mTORC1/C2 pathways was assessed by Western blot analysis. RPMI8226 cells and U266 cell lines with AMPK knockdown were generated by transfection with small interfering RNA targeting the AMPK-α1 and α2 subunits using Lipofectamine 2000 reagent.

Results

Metformin effectively inhibited the proliferation of MM cell lines, an effect that was associated with the induction of autophagy and G0/G1 cell cycle arrest, but not apoptosis. Metformin activated AMPK and repressed both mTORC1 and mTORC2 signaling pathways in myeloma cells as well as downstream molecular signaling pathways, such as p-4EBP1 and p-AKT. AMPK activation resulted in direct phosphorylation and activation of tuberous sclerosis complex 2 (TSC2), leading to inhibition of the mammalian target of rapamycin (mTOR). In addition, metformin inhibited myeloma cell growth in an AMPK-dependent manner. The xenograft mouse model further confirmed that metformin inhibited tumor growth by upregulation of AMPK and downregulation of mTOR. Conclusions: Metformin inhibits the proliferation of myeloma cells by inducing autophagy and cell-cycle arrest. Our results suggest that the molecular mechanism involves dual repression of mTORC1 and mTORC2 pathways via AMPK activation. Our study provides a theoretical basis for the development of novel strategies for the treatment of MM using metformin as an already approved and safe drug.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。