A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood

基于单溴双胍的测定法可测量血液中活性硫化物的药代动力学特征

阅读:4
作者:Edward A Wintner, Thomas L Deckwerth, William Langston, Asa Bengtsson, Dina Leviten, Paul Hill, Michael A Insko, Ronald Dumpit, Emily VandenEkart, Christopher F Toombs, Csaba Szabo

Background and purpose

Hydrogen sulphide (H(2)S) is a labile, endogenous metabolite of cysteine, with multiple biological roles. The development of sulphide-based therapies for human diseases will benefit from a reliable method of quantifying H(2)S in blood and tissues. Experimental approach: Concentrations of reactive sulphide in saline and freshly drawn whole blood were quantified by reaction with the thio-specific derivatization agent monobromobimane, followed by reversed-phase fluorescence HPLC and/or mass spectrometry. In pharmacokinetic studies, male rats were exposed either to intravenous infusions of sodium sulphide or to H(2)S gas inhalation, and levels of available blood sulphide were measured. Levels of dissolved H(2)S/HS(-) were concomitantly measured using an amperometric sensor. Key

Purpose

Hydrogen sulphide (H(2)S) is a labile, endogenous metabolite of cysteine, with multiple biological roles. The development of sulphide-based therapies for human diseases will benefit from a reliable method of quantifying H(2)S in blood and tissues. Experimental approach: Concentrations of reactive sulphide in saline and freshly drawn whole blood were quantified by reaction with the thio-specific derivatization agent monobromobimane, followed by reversed-phase fluorescence HPLC and/or mass spectrometry. In pharmacokinetic studies, male rats were exposed either to intravenous infusions of sodium sulphide or to H(2)S gas inhalation, and levels of available blood sulphide were measured. Levels of dissolved H(2)S/HS(-) were concomitantly measured using an amperometric sensor. Key

Results

Monobromobimane was found to rapidly and quantitatively derivatize sulphide in saline or whole blood to yield the stable small molecule sulphide dibimane. Extraction and quantification of this bis-bimane derivative were validated via reversed-phase HPLC separation coupled to fluorescence detection, and also by mass spectrometry. Baseline levels of sulphide in blood were in the range of 0.4-0.9 microM. Intravenous administration of sodium sulphide solution (2-20 mg x kg(-1) x h(-1)) or inhalation of H(2)S gas (50-400 ppm) elevated reactive sulphide in blood in a dose-dependent manner. Each 1 mg x kg(-1) x h(-1) of sodium sulphide infusion into rats was found to be pharmacokinetically equivalent to approximately 30 ppm of H(2)S gas inhalation. Conclusions and implications: The monobromobimane derivatization method is a sensitive and reliable means to measure reactive sulphide species in whole blood. Using this method, we have established a bioequivalence between infused sodium sulphide and inhaled H(2)S gas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。