The transcriptional and splicing landscape of intestinal organoids undergoing nutrient starvation or endoplasmic reticulum stress

营养缺乏或内质网应激状态下肠道类器官的转录和剪接情况

阅读:8
作者:Jessica Tsalikis, Qun Pan, Ivan Tattoli, Charles Maisonneuve, Benjamin J Blencowe, Dana J Philpott, Stephen E Girardin

Background

The intestinal epithelium plays a critical role in nutrient absorption and innate immune defense. Recent studies showed that metabolic stress pathways, in particular the integrated stress response (ISR), control intestinal epithelial cell fate and function. Here, we used RNA-seq to analyze the global transcript level and alternative splicing responses of primary murine enteroids undergoing two distinct ISR-triggering stresses, endoplasmic reticulum (ER) stress and nutrient starvation.

Conclusions

Together, these results provide novel understanding of the importance of metabolic stress pathways in the intestinal epithelium. Specifically, the importance of cellular stresses in the regulation of immune and defense function, metabolism, proliferation and ISC activity in the intestinal epithelium is highlighted. Furthermore, this work highlights an under-appreciated role played by alternative splicing in shaping the response to stress and reveals a potential mechanism for gene regulation involving coupling of AS and alternative translation start sites.

Results

Our results reveal the core transcript level response to ISR-associated stress in murine enteroids, which includes induction of stress transcription factors, as well as genes associated with chemotaxis and inflammation. We also identified the transcript expression signatures that are unique to each ISR stress. Among these, we observed that ER stress and nutrient starvation had opposite effects on intestinal stem cell (ISC) transcriptional reprogramming. In agreement, ER stress decreased EdU incorporation, a marker of cell proliferation, in primary murine enteroids, while nutrient starvation had an opposite effect. We also analyzed the impact of these cellular stresses on mRNA splicing regulation. Splicing events commonly regulated by both stresses affected genes regulating splicing and were associated with nonsense-mediated decay (NMD), suggesting that splicing is modulated by an auto-regulatory feedback loop during stress. In addition, we also identified a number of genes displaying stress-specific splicing regulation. We suggest that functional gene expression diversity may arise during stress by the coordination of alternative splicing and alternative translation, and that this diversity might contribute to the cellular response to stress. Conclusions: Together, these results provide novel understanding of the importance of metabolic stress pathways in the intestinal epithelium. Specifically, the importance of cellular stresses in the regulation of immune and defense function, metabolism, proliferation and ISC activity in the intestinal epithelium is highlighted. Furthermore, this work highlights an under-appreciated role played by alternative splicing in shaping the response to stress and reveals a potential mechanism for gene regulation involving coupling of AS and alternative translation start sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。