Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death

开发小分子 PUMA 抑制剂以减轻辐射引起的细胞死亡

阅读:12
作者:Gabriela Mustata, Mei Li, Nicki Zevola, Ahmet Bakan, Lin Zhang, Michael Epperly, Joel S Greenberger, Jian Yu, Ivet Bahar

Abstract

PUMA (p53 upregulated modulator of apoptosis) is a Bcl-2 homology 3 (BH3)-only Bcl-2 family member and a key mediator of apoptosis induced by a wide variety of stimuli. PUMA is particularly important in initiating radiation-induced apoptosis and damage in the gastrointestinal and hematopoietic systems. Unlike most BH3-only proteins, PUMA neutralizes all five known antiapoptotic Bcl-2 members though high affinity interactions with its BH3 domain to initiate mitochondria-dependent cell death. Using structural data on the conserved interactions of PUMA with Bcl-2-like proteins, we developed a pharmacophore model that mimics these interactions. In silico screening of the ZINC 8.0 database with this pharmacophore model yielded 142 compounds that could potentially disrupt these interactions. Thirteen structurally diverse compounds with favorable in silico ADME/Toxicity profiles have been retrieved from this set. Extensive testing of these compounds using cell-based and cell-free systems identified lead compounds that confer considerable protection against PUMA-dependent and radiation-induced apoptosis, and inhibit the interaction between PUMA and Bcl-xL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。