Identification of an additional supraspinal component to the analgesic mechanism of action of buprenorphine

鉴定丁丙诺啡镇痛机制中的额外脊髓上成分

阅读:5
作者:Zhe Ding, Robert B Raffa

Background and purpose

Buprenorphine displays attributes of opioids, but also some features distinct from them. We examined spinal and supraspinal signal transduction of buprenorphine-induced anti-nociception in mice compared with morphine and fentanyl. Experimental approach: The opioid receptor antagonist naloxone, Pertussis toxin (PTX), G(z) protein antisense and nociceptin/orphanin-FQ receptor agonist nociceptin, and antagonist, JTC-801, were injected supraspinally (intracerebroventricular) and spinally (intrathecal). Also the cell-permeable Ser/Thr protein phosphatase inhibitor okadaic acid was given supraspinally. Key

Purpose

Buprenorphine displays attributes of opioids, but also some features distinct from them. We examined spinal and supraspinal signal transduction of buprenorphine-induced anti-nociception in mice compared with morphine and fentanyl. Experimental approach: The opioid receptor antagonist naloxone, Pertussis toxin (PTX), G(z) protein antisense and nociceptin/orphanin-FQ receptor agonist nociceptin, and antagonist, JTC-801, were injected supraspinally (intracerebroventricular) and spinally (intrathecal). Also the cell-permeable Ser/Thr protein phosphatase inhibitor okadaic acid was given supraspinally. Key

Results

Spinal naloxone (20 microg) or PTX (1 microg) attenuated morphine, fentanyl and buprenorphine (s.c.) anti-nociception. Supraspinal naloxone or PTX attenuated morphine and fentanyl, but not buprenorphine anti-nociception. Spinal G(z) protein antisense did not alter buprenorphine, morphine or fentanyl anti-nociception and supraspinal G(z)-antisense did not alter morphine or fentanyl anti-nociception. However, supraspinal G(z)-antisense (not random sense) reduced buprenorphine anti-nociception. Peripheral JTC-801 (1 mgxkg(-1), i.p.) enhanced the ascending (3 mgxkg(-1)) and descending (30 mgxkg(-1)) portions of buprenorphine's dose-response curve, but only spinal, not supraspinal, nociceptin (10 nmolxL(-1)) enhanced buprenorphine anti-nociception. Intracereboventricular okadaic acid (0.001-10 pg) produced a biphasic low-dose attenuation, high-dose enhancement of buprenorphine(3 or 30 mgxkg(-1), s.c.) anti-nociception, but did not affect morphine or fentanyl anti-nociception. Conclusions and implications: Buprenorphine has an opioid component to its supraspinal mechanism of analgesic action. Our present results reveal an additional supraspinal component insensitive to naloxone, PTX and nociceptin/orphanin-FQ, but involving G(z) protein and Ser/Thr protein phosphatase. These data might help explain the unique preclinical and clinical profiles of buprenorphine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。