Synthetic Symbiosis under Environmental Disturbances

环境干扰下的合成共生

阅读:5
作者:Jai A Denton #, Chaitanya S Gokhale #

Abstract

By virtue of complex ecologies, the behavior of mutualisms is challenging to study and nearly impossible to predict. However, laboratory engineered mutualistic systems facilitate a better understanding of their bare essentials. On the basis of an abstract theoretical model and a modifiable experimental yeast system, we explore the environmental limits of self-organized cooperation based on the production and use of specific metabolites. We develop and test the assumptions and stability of the theoretical model by leveraging the simplicity of an artificial yeast system as a simple model of mutualism. We examine how one-off, recurring, and permanent changes to an ecological niche affect a cooperative interaction and change the population composition of an engineered mutualistic system. Moreover, we explore how the cellular burden of cooperating influences the stability of mutualism and how environmental changes shape this stability. Our results highlight the fragility of mutualisms and suggest interventions, including those that rely on the use of synthetic biology.IMPORTANCE The power of synthetic biology is immense. Will it, however, be able to withstand the environmental pressures once released in the wild. As new technologies aim to do precisely the same, we use a much simpler model to test mathematically the effect of a changing environment on a synthetic biological system. We assume that the system is successful if it maintains proportions close to what we observe in the laboratory. Extreme deviations from the expected equilibrium are possible as the environment changes. Our study provides the conditions and the designer specifications which may need to be incorporated in the synthetic systems if we want such "ecoblocs" to survive in the wild.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。