Conclusion
Altogether, the present findings suggested an important role for iNOS in the pathophysiological development of HFpEF, indicating that iNOS inhibition may represent a potential therapeutic strategy for HFpEF.
Methods
The selective iNOS inhibitor L-NIL was used to examine the effects of short-term iNOS inhibition, whereas the long-term effects of iNOS deficiency were evaluated using iNOS-null mice. Cardiac and mitochondrial function, oxidative stress and Akt S-nitrosylation were then measured.
Objective
The aim of the present study was to investigate the role of inducible nitric oxide synthase (iNOS) and its underlying mechanism in a high-fat diet and Nω-nitro-L-arginine methyl ester-induced HFpEF mouse model.
Results
The results demonstrated that both pharmacological inhibition and iNOS knockout mitigated mitochondrial dysfunction, oxidative stress and Akt S-nitrosylation, leading to an ameliorated HFpEF phenotype in mice. In vitro, iNOS directly induced Akt S-nitrosylation at cysteine 224 residues , leading to oxidative stress, while inhibiting insulin-mediated glucose uptake in myocytes.
