Abstract
Elemental selenium nanoparticles (SeNPs) have multiple biological activities. In this study, we investigated the protective effects of biogenic SeNPs (BioSeNPs) on CCl4-induced liver damage in mice. The results showed that: (i) when compared to sodium selenite (SS), BioSeNPs has a similar tissue distribution after intragastrical administration to mice; (ii) BioSeNPs and SS showed comparable efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase in liver cell lines, mice blood and liver; (iii) pretreatment with BioSeNPs inhibiting the elevation of activities of various enzymes significantly which included aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase and liver lipid peroxide (p < 0.05 or p < 0.01) in CCl4-treated mice; (iv) activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) were significantly increased (p < 0.05 or p < 0.01) after a pretreatment with BioSeNPs in CCl4-treated mice; (v) histopathological damages in the liver from CCl4-treated mice were ameliorated by a pretreatment with BioSeNPs. In conclusion, these results have shown that BioSeNPs is able to protect the liver from CCl4-induced hepatic damage via increasing the antioxidant capacity and inhibiting oxidative damage. BioSeNPs may have the potential to be used as a trace element food supplement inducing antioxidant bioactivities.
