Effect of PLA2G6 and SMPD1 Variants on the Lipid Metabolism in the Cerebrospinal Fluid of Patients with Parkinson's Disease: A Non-targeted Lipidomics Study

PLA2G6 和 SMPD1 变异体对帕金森病患者脑脊液脂质代谢的影响:一项非靶向脂质组学研究

阅读:15
作者:Yongang Li, GuiKai Ji, Mengjia Lian, Xuan Liu, Ying Xu, Yaxing Gui

Conclusions

Our study demonstrated that the disturbed composition and function of CSF-derived exosome lipidome during the pathological stage of PD may affect different types of sleep disorder in PD.

Methods

We used a non-targeted lipidomics to explore the lipid composition of cerebrospinal fluid (CSF) exosomes derived from patients with PD carrying phospholipase A2 Group VI (PLA2G6) and sphingomyelin phosphodiesterase 1 (SMPD1) mutations.

Results

PLA2G6 mutations (c.1966C > G, Leu656Val; c.2077C > G, Leu693Val; c.1791delC, His597fx69) significantly increase the exosomal content of glycerophospholipids and lysophospholipids, specifically phosphatidylcholine (PC) and lysophosphatidylcholine (LPC). Exosome surface presence of melatomin receptor 1A (MTNR1A) was detectable only in patients with PLA2G6 mutations. We have further shown that, in patients with PD carrying PLA2G6 mutations, sleep latency was significantly longer compared to those carrying WT PLA2G6, and we speculate that functional PLA2G6 mutations lead to structural changes and lipid deregulation of exosomes, which in turn alters exosomal cargo and affects PD-related sleep disorders. In SMPD1, G508R variant-carrying patients with PD abundance of sphingomyelins was significantly higher and had significantly shorter rapid eye movement sleep. Conclusions: Our study demonstrated that the disturbed composition and function of CSF-derived exosome lipidome during the pathological stage of PD may affect different types of sleep disorder in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。