Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma

GalphaiGDP 和 Gbetagamma 对神经元 G 蛋白门控 K+ 通道的 GIRK1 和 GIRK2 亚基的不同调节

阅读:7
作者:Moran Rubinstein, Sagit Peleg, Shai Berlin, Dovrat Brass, Tal Keren-Raifman, Carmen W Dessauer, Tatiana Ivanina, Nathan Dascal

Abstract

G protein activated K+ channels (GIRK, Kir3) are switched on by direct binding of Gbetagamma following activation of Gi/o proteins via G protein-coupled receptors (GPCRs). Although Galphai subunits do not activate GIRKs, they interact with the channels and regulate the gating pattern of the neuronal heterotetrameric GIRK1/2 channel (composed of GIRK1 and GIRK2 subunits) expressed in Xenopus oocytes. Coexpressed Galphai3 decreases the basal activity (Ibasal) and increases the extent of activation by purified or coexpressed Gbegagamma. Here we show that this regulation is exerted by the 'inactive' GDP-bound Galphai3GDP and involves the formation of Galphai3betagamma heterotrimers, by a mechanism distinct from mere sequestration of Gbetagamma 'away' from the channel. The regulation of basal and Gbetagamma-evoked current was produced by the 'constitutively inactive' mutant of Galphai3, Galphai3G203A, which strongly binds Gbetagamma, but not by the 'constitutively active' mutant, Galphai3Q204L, or by Gbetagamma-scavenging proteins. Furthermore, regulation by Galphai3G203A was unique to the GIRK1 subunit; it was not observed in homomeric GIRK2 channels. In vitro protein interaction experiments showed that purified Gbetagamma enhanced the binding of Galphai3GDP to the cytosolic domain of GIRK1, but not GIRK2. Homomeric GIRK2 channels behaved as a 'classical' Gbetagamma effector, showing low Ibasal and strong Gbetagamma-dependent activation. Expression of Galphai3G203A did not affect either Ibasal or Gbetagamma-induced activation. In contrast, homomeric GIRK1* (a pore mutant able to form functional homomeric channels) exhibited large Ibasal and was poorly activated by Gbegagamma. Expression of Galphai3GDP reduced Ibasal and restored the ability of Gbetagamma to activate GIRK1*, like in GIRK1/2. Transferring the unique distal segment of the C terminus of GIRK1 to GIRK2 rendered the latter functionally similar to GIRK1*. These results demonstrate that GIRK1 containing channels are regulated by both Galphai3GDP and Gbetagamma, while GIRK2 is a Gbetagamma-effector insensitive to Galphai3GDP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。