Optimization of salicylic acid and chitosan treatment for bitter secoiridoid and xanthone glycosides production in shoot cultures of Swertia paniculata using response surface methodology and artificial neural network

使用响应面法和人工神经网络优化水杨酸和壳聚糖处理对獐牙菜芽培养物中苦味裂环烯醚萜和黄酮苷的生产

阅读:7
作者:Prabhjot Kaur, R C Gupta, Abhijit Dey, Tabarak Malik, Devendra Kumar Pandey

Background

In this study, response surface methodology (RSM) and artificial neural network (ANN) was used to construct the predicted models of linear, quadratic and interactive effects of two independent variables viz. salicylic acid (SA) and chitosan (CS) for the production of amarogentin (I), swertiamarin (II) and mangiferin (III) from shoot cultures of Swertia paniculata Wall. These compounds are the major therapeutic metabolites in the Swertia plant, which have significant role and demand in the pharmaceutical industries.

Conclusions

In optimization study, (I) show 0.170-0.435%; (II) display 1.020-4.987% and (III) upto 2.550-4.357% disparity with varied range of SA (1-20 mM) and CS (1-20 mg L- 1). Overall, optimization of elicitors to promote secoiridoid and xanthone glycoside production with ANN modeling (r2 = 100%) offered more significant results as compared to RSM (r2 = 99.8%).

Results

Present study highlighted that different concentrations of SA and CS elicitors substantially influenced the % yield of (I), (II) and (III) compounds in the shoot culture established on modified ½ MS medium (supplemented with 2.22 mM each of BA and KN and 2.54 mM NAA). In RSM, different response variables with linear, quadratic and 2 way interaction model were computed with five-factor-three level full factorial CCD. In ANN modelling, 13 runs of CCD matrix was divided into 3 subsets, with approximate 8:1:1 ratios to train, validate and test. The optimal enhancement of (I) (0.435%), (II) (4.987%) and (III) (4.357%) production was achieved in 14 days treatment in shoot cultures of S. paniculata elicited by 9 mM and 12 mg L- 1 concentrations (SA) and (CS). Conclusions: In optimization study, (I) show 0.170-0.435%; (II) display 1.020-4.987% and (III) upto 2.550-4.357% disparity with varied range of SA (1-20 mM) and CS (1-20 mg L- 1). Overall, optimization of elicitors to promote secoiridoid and xanthone glycoside production with ANN modeling (r2 = 100%) offered more significant results as compared to RSM (r2 = 99.8%).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。