Novel diaminoguanidine functionalized cellulose: synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions

新型二氨基胍功能化纤维素:合成、表征、吸附特性及用于 ICP-AES 测定水溶液中的铜 (II)、汞 (II)、铅 (II) 和镉 (II)

阅读:16
作者:Magda A Akl, Mohammed A Hashem, Mohammed A Ismail, Dina A Abdelgalil

Abstract

In this study, the novel adsorbent diaminoguanidine-modified cellulose (DiGu.MC) was synthesized to extract mercury, copper, lead and cadmium ions from aqueous solutions and environmental water samples. The synthetic strategy involved oxidizing cellulose powder into dialdehyde cellulose (DAC) and reacting DAC with diaminoguanidine to create an imine linkage between the two reactants to form diaminoguanidine-modified cellulose (DiGu.MC). The structure and morphology of the adsorbent were studied using a variety of analytical techniques including Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area measurements. Adsorption of mercury, copper, lead, and cadmium ions was optimized by examining the effects of pH, initial concentration, contact time, dose, temperature and competing ions. Under optimal adsorption conditions, the adsorption capacities of Cu2+, Hg2+, Pb2+, and Cd2+ were 66, 55, 70 and 41 mg g-1, respectively. The adsorption isotherm is in very good agreement with the Langmuir isotherm model, indicating that a monomolecular layer is formed on the surface of DiGu.MC. The kinetics of adsorption are in good agreement with the pseudo-second kinetics model that proposes the chemical adsorption of metal ions via the nitrogen functional groups of the adsorbent. Thermodynamic studies have confirmed that the adsorption of heavy metals by DiGu.MC is exothermic and spontaneous. Regeneration studies have shown that the adsorbent can be recycled multiple times by removing metal ions with 0.2 M nitric acid. The removal efficiency for regeneration was over 99%. DiGu.MC is introduced as a unique adsorbent in removing mercury, copper, lead and cadmium with a simple synthetic strategy, with cheap starting materials, a unique chemical structure and fast adsorption kinetics leading to excellent removal efficiency and excellent regeneration. The mechanism of adsorption of the investigated heavy metals, is probably based on the chelation between the metal ions and the N donors of DiCu.MC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。