Intracortical Administration of the Complement C3 Receptor Antagonist Trifluoroacetate Modulates Microglia Reaction after Brain Injury

补体 C3 受体拮抗剂三氟乙酸盐皮层内给药调节脑损伤后小胶质细胞反应

阅读:12
作者:Roxana Surugiu, Bogdan Catalin, Danut Dumbrava, Andrei Gresita, Denisa Greta Olaru, Dirk M Hermann, Aurel Popa-Wagner

Abstract

Worldwide, millions of individuals suffer an ischemic stroke each year, causing major disability, especially in the elderly, where stroke is the number one cause of disability. However, to date, no effective therapy exists that targets the functional recovery after stroke. After necrosis, neuroinflammation is a common feature of the acute stroke and a major obstacle to tissue restoration. In the lesioned area, the dying neurons release chemotactic signals, such as fractalkine/CX3CL1, which evoke "eat-me" signals that are recognized by microglia expressing complement C3a receptor (C3aR), resulting in phagocytosis of the dying but still viable neurons, known as secondary phagocytosis. Using a mouse model of stroke and two-photon microscopy, we aimed to attenuate poststroke phagocytosis of the dying but still viable neurons by using SB 290157, an antagonist of C3aR. We found that intracortical administration of SB 290157 reduced the number of inflammatory microglial cells expressing ED1 and Iba1 antigens at the lesion site. We could show, in vivo, that two days after a needle-induced cortical lesion there were less microglial cells present around the injury site, displaying less high-order branches and an increase in the lower order ones, suggesting an attenuated phagocytic phenotype in treated animals as compared with controls. We conclude that the C3aR antagonist, SB 290157, may be used in the future to limit the neuronal death by limiting secondary phagocytosis after stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。