5α-reductase type 1 modulates insulin sensitivity in men

5α-还原酶 1 型调节男性的胰岛素敏感性

阅读:8
作者:Rita Upreti, Katherine A Hughes, Dawn E W Livingstone, Calum D Gray, Fiona C Minns, David P Macfarlane, Ian Marshall, Laurence H Stewart, Brian R Walker, Ruth Andrew

Conclusion

Dual inhibition of 5αRs, but not inhibition of 5αR2 alone, modulates insulin sensitivity in human peripheral tissues rather than liver. This may have important implications for patients prescribed dutasteride for prostatic disease.

Objective

Our objective was to test the hypothesis that inhibition of 5αR1 causes metabolic dysfunction in humans. Design, setting, and participants: This double-blind randomized controlled parallel group study at a clinical research facility included 46 men (20-85 years) studied before and after intervention. Intervention: Oral dutasteride (0.5 mg daily; n = 16), finasteride (5 mg daily; n = 16), or control (tamsulosin; 0.4 mg daily; n = 14) was administered for 3 months. Main outcome measure: Glucose disposal was measured during a stepwise hyperinsulinemic-euglycemic clamp. Data are mean (SEM).

Results

Dutasteride and finasteride had similar effects on steroid profiles, with reduced urinary androgen and glucocorticoid metabolites and reduced circulating DHT but no change in plasma or salivary cortisol. Dutasteride, but not finasteride, reduced stimulation of glucose disposal by high-dose insulin (dutasteride by -5.7 [3.2] μmol/kg fat-free mass/min, versus finasteride +7.2 [3.0], and tamsulosin +7.0 [2.0]). Dutasteride also reduced suppression of nonesterified fatty acids by insulin and increased body fat (by 1.6% [0.6%]). Glucose production and glycerol turnover were unchanged. Consistent with metabolic effects of dutasteride being mediated in peripheral tissues, mRNA for 5αR1 but not 5αR2 was detected in human adipose tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。