Zebrafish patient-derived xenograft models predict lymph node involvement and treatment outcome in non-small cell lung cancer

斑马鱼患者异种移植模型预测非小细胞肺癌淋巴结受累和治疗结果

阅读:9
作者:Zaheer Ali, Malin Vildevall, Gabriela Vazquez Rodriguez, Decky Tandiono, Ioannis Vamvakaris, Georgios Evangelou, Georgios Lolas, Konstantinos N Syrigos, Alberto Villanueva, Michael Wick, Shenga Omar, Anna Erkstam, Julia Schueler, Anna Fahlgren, Lasse D Jensen2

Background

Accurate predictions of tumor dissemination risks and medical treatment outcomes are critical to personalize therapy. Patient-derived xenograft (PDX) models in mice have demonstrated high accuracy in predicting therapeutic outcomes, but

Conclusions

We conclude that the ZTX platform provide a fast, accurate, and clinically relevant system for evaluation of treatment outcome and invasion/dissemination of PDX models, providing an attractive platform for combined mouse-zebrafish PDX trials and personalized medicine.

Methods

Using a panel of 39 non-small cell lung cancer PDX models, we developed a combined mouse-zebrafish PDX platform based on direct implantation of cryopreserved PDX tissue fragments into zebrafish embryos, without the need for pre-culturing or expansion. Clinical proof-of-principle was established by direct implantation of tumor samples from four patients.

Results

The resulting ZTX models responded to Erlotinib and Paclitaxel, with similar potency as in mouse-PDX models and the patients themselves, and resistant tumors similarly failed to respond to these drugs in the ZTX system. Drug response was coupled to elevated expression of EGFR, Mdm2, Ptch1 and Tsc1 (Erlotinib), or Nras and Ptch1 (Paclitaxel) and reduced expression of Egfr, Erbb2 and Foxa (Paclitaxel). Importantly, ZTX models retained the invasive phenotypes of the tumors and predicted lymph node involvement of the patients with 91% sensitivity and 62% specificity, which was superior to clinically used tests. The biopsies from all four patient tested implanted successfully, and treatment outcome and dissemination were quantified for all patients in only 3 days. Conclusions: We conclude that the ZTX platform provide a fast, accurate, and clinically relevant system for evaluation of treatment outcome and invasion/dissemination of PDX models, providing an attractive platform for combined mouse-zebrafish PDX trials and personalized medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。