Somatic mutation load and spectra: A record of DNA damage and repair in healthy human cells

体细胞突变负荷和谱:健康人类细胞中 DNA 损伤和修复的记录

阅读:4
作者:Natalie Saini, Dmitry A Gordenin

Abstract

Somatic genome instability is a hallmark of cancer genomes and has been linked to aging and a variety of other pathologies. Large-scale cancer genome and exome sequencing have revealed that mutation load and spectra in cancers can be influenced by environmental exposures, the anatomical site of exposures, and tissue type. There is now an abundance of data favoring the hypothesis that a substantial portion of the mutations in cancers originate prior to carcinogenesis in stem cells of the healthy individual. Rapid advances in sequencing of noncancer cells from healthy humans have shown that their mutation loads and spectra resemble cancer data. Similar to cancer genomes, mutation profiles of healthy cells show marked intra-individual variation, thus providing a metric of the various factors-environmental and endogenous-involved in mutagenesis in these individuals. This review focuses on the current methodologies to measure mutation loads and to determine mutation signatures for evaluating the environmental and endogenous sources of DNA damage in human somatic cells. We anticipate that in future, such large-scale studies aimed at exploring the landscapes of somatic mutations across different cell types in healthy people would provide a valuable resource for designing personalized preventative strategies against diseases associated with somatic genome instability. Environ. Mol. Mutagen. 59:672-686, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。