Unveiling radiobiological traits and therapeutic responses of BRAFV600E-mutant colorectal cancer via patient-derived organoids

通过患者来源的类器官揭示 BRAFV600E 突变结直肠癌的放射生物学特征和治疗反应

阅读:7
作者:Peiyuan Mu #, Shaobo Mo #, Xingfeng He, Hui Zhang, Tao Lv, Ruone Xu, Luoxi He, Fan Xia, Shujuan Zhou, Yajie Chen, Yaqi Wang, Lijun Shen, Juefeng Wan, Lili Huang, Weiqing Lu, Xinyue Liang, Xiaomeng Li, Ping Lu, Junjie Peng, Guoqiang Hua, Kewen Hu, Zhen Zhang, Yan Wang1

Background

Radiotherapy (RT) is an essential treatment for colorectal cancer (CRC), yet the factors influencing radiosensitivity remain unclear. In the quest to enhance the therapeutic efficacy in CRC, the interplay between genetic mutations and RT sensitivity has emerged as a pivotal yet enigmatic area.

Conclusions

This study outlines the distinct radiobiological profile of BRAFV600E-mutant CRC, underscoring the critical role of radiotherapy in comprehensive treatment strategies. This work not only advances our molecular understanding of CRC but also paves the way for precision medicine, offering valuable insights for therapeutic decision-making in the clinical management of BRAFV600E-mutant CRC.

Methods

We harness the fidelity of patient-derived organoids (PDOs) to dissect the molecular landscape of radiosensitivity, with a particular emphasis on BRAFV600E mutations. To further investigate, a cohort of 9 BRAFV600E-mutant and 10 BRAF wild-type PDOs is constructed to systematically assess the radiobiological traits of BRAFV600E-mutant CRC, including morphology, cell viability, and DNA damage, while also evaluating their responses to chemotherapy and chemoradiotherapy.

Results

Our systematic investigation unveils a profound correlation between BRAFV600E mutation status and radioresistance, which is validated by clinical treatment responses. Intriguingly, BRAFV600E-mutant PDOs exhibit reduced sensitivity to conventional chemotherapy, yet demonstrate an enhanced response to combined chemoradiotherapy, characterized by increased apoptosis. The results are validated through in vivo analyses using patient-derived organoid xenograft mouse models and aligned with patient clinical outcomes. Conclusions: This study outlines the distinct radiobiological profile of BRAFV600E-mutant CRC, underscoring the critical role of radiotherapy in comprehensive treatment strategies. This work not only advances our molecular understanding of CRC but also paves the way for precision medicine, offering valuable insights for therapeutic decision-making in the clinical management of BRAFV600E-mutant CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。