Concentrated ambient PM2.5 exposure affects mice sperm quality and testosterone biosynthesis

浓缩环境 PM2.5 暴露影响小鼠精子质量和睾酮生物合成

阅读:5
作者:Yingying Yang, Tingting Yang, Shengxin Liu, Zhijuan Cao, Yan Zhao, Xiujuan Su, Zehuan Liao, Xiaoming Teng, Jing Hua

Background

Studies suggested that PM2.5 exposure could lead to adverse reproductive effects on male animals. However, the underlying mechanism is still not clear. Besides, animals in the majority of previous studies were exposed to PM2.5 through intratracheal instillation which should be improved. In addition, limited amount of research has been conducted in China where the PM2.5 concentration is higher and the PM2.5 components are different. The

Conclusion

Concentrated ambient PM2.5 exposure altered mice sperm concentration, motility and morphology, which might be mediated primarily by the decline in testosterone concentration and testosterone biosynthesis process.

Methods

A total of 12 male C57BL/6 mice were exposed to filtered air (FA) or CAP for 125 days using the Shanghai Meteorological and Environmental Animal Exposure System. The mice sperm concentration, sperm motility, DNA fragmentation index, high DNA stainability and plasma testosterone were analyzed. Testicular histology and sperm morphology were observed through optical microscope. Testosterone biosynthesis related gene expressions were analyzed using real-time PCR, including cytochrome P450 CHOL side-chain cleavage enzyme (P450scc), steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β HSD), 17β-hydroxysteroid dehydrogenase, cytochrome P450 aromatase (P450arom), estrogen receptor (ER), androgen receptor (AR) and follicle stimulating hormone receptor (FSHR).

Results

Exposure to CAP resulted in disturbance of various stages of spermatogenesis and significant higher percentage of abnormal sperm (FA vs. CAP: 24.37% vs. 44.83%) in mice testis. CAP exposure significantly decreased sperm concentration (43.00 × 106 vs. 25.33 × 106) and motility (PR: 63.58% vs. 55.15%; PR + NP: 84.00% vs. 77.08%) in epididymis. Plasma testosterone concentration were significantly declined (0.28 ng/ml vs. 0.69 ng/ml) under CAP exposure. Notably, the levels of testosterone biosynthesis related genes, StAR, P450scc, P450arom, ER and FSHR were significantly decreased with CAP exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。