Conclusion
Here we demonstrate for the first time that plasma chemerin levels are significantly heritable and identified a novel role for chemerin as a stimulator of angiogenesis.
Objective
The objective of the study was to identify factors that affect the regulation and potential function of chemerin using a genetics approach. Design, setting, patients, and intervention: Plasma chemerin levels were measured in subjects from the San Antonio Family Heart Study, a large family-based genetic epidemiological study including 1354 Mexican-American individuals. Individuals were randomly sampled without regard to phenotype or disease status. Main outcome measures: A genome-wide association analysis using 542,944 single-nucleotide polymorphisms in a subset of 523 of the same subjects was undertaken. The effect of chemerin on angiogenesis was measured using human endothelial cells and interstitial cells in coculture in a specially formulated medium.
Results
Serum chemerin levels were found to be highly heritable (h(2) = 0.25; P = 1.4 x 10(-9)). The single-nucleotide polymorphism showing strongest evidence of association (rs347344; P = 1.4 x 10(-6)) was located within the gene encoding epithelial growth factor-like repeats and discoidin I-like domains 3, which has a known role in angiogenesis. Functional angiogenesis assays in human endothelial cells confirmed that chemerin significantly mediated the formation of blood vessels to a similar extent as vascular endothelial growth factor.
