Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3β/NRF2 Pathway

瑞马唑仑通过调控AKT/GSK-3β/NRF2通路抑制脑缺血/再灌注损伤中的氧化应激和细胞凋亡

阅读:6
作者:Mei Duan #, Ning Yu #, Jia Liu, Yang Zhao, Jing Zhang, Siyi Song, Shilei Wang

Conclusion

This study demonstrates that remimazolam activates the AKT/GSK-3β/NRF2 pathway, thereby attenuating oxidative stress and apoptosis to protect against brain I/R injury.

Material and methods

Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment. The viability and apoptosis rate of SY5Y cells, neurological deficit score, cerebral infarction volume and morphological changes of rat brain cells as well as the protein expression of Bax, Bcl2, Caspase 3, Cleaved-Caspase 3 and the number of TdT-mediated dUTP Nick-End Labeling (TUNEL)-positive cells in the penumbral region were detected. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), NRF2, heme oxygenase 1 (HO-1), AKT, P-AKT, GSK-3β, P-GSK-3β protein expression, and nuclear translocation of NRF2 were measured in cell and animal assays.

Methods

Remimazolam was added at the beginning of cell and rat reperfusion, and the PI3K/AKT inhibitor LY294002 was added to inhibit the AKT/GSK-3β/NRF2 pathway 24 h before cellular OGD/R treatment and 30 min before rat brain I/R treatment. The viability and apoptosis rate of SY5Y cells, neurological deficit score, cerebral infarction volume and morphological changes of rat brain cells as well as the protein expression of Bax, Bcl2, Caspase 3, Cleaved-Caspase 3 and the number of TdT-mediated dUTP Nick-End Labeling (TUNEL)-positive cells in the penumbral region were detected. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), NRF2, heme oxygenase 1 (HO-1), AKT, P-AKT, GSK-3β, P-GSK-3β protein expression, and nuclear translocation of NRF2 were measured in cell and animal assays.

Results

Reduced SY5Y cell viability and increased apoptosis caused by OGD/R injury, elevated neurological deficit scores and cerebral infarct volume induced by brain I/R injury in rats, cerebral cell injury, as well as elevated Bax, Cleaved-Caspase 3, decreased Bcl2, and increased number of TUNEL-positive cells in rat brain tissue were all moderated by remimazolam. Decreased GSH-Px, SOD and Elevated MDA, ROS induced by OGD/R-injured SY5Y cells and brain I/R-injured rats were moderated by remimazolam. Meanwhile, remimazolam increased NRF2, HO-1, P-AKT, P-GSK-3β, and the nuclear accumulation of NRF2. The PI3K/AKT inhibitor LY294002 reversed the role of remimazolam in brain I/R injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。